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Abstract

A two-stage experiment was performed to determine the influence of a high-
pressure fog system on the CO; concentration and gas exchange efficiency (GEE) in
greenhouses with CO; enrichment. The experiments were carried out with tomatoes
(Lycopersicon esculentum). Photosynthetic GEE was introduced as a new evaluative
quantity to represent the short-term CO; uptake capacity of the plant canopy. The
physiological data for the plants were measured with a phytomonitoring system. The
ratio between the measured and the calculated CO; uptake GEE was calculated and
coded on a color scale. With the Mollier plot method, ranges with a maximum GEE
can be located for several temperatures and relative humidities. Plant yields and
quality were also recorded. A preliminary test identified an increase in GEE with
hlgher relative humidity, with a dependence on leaf transpiration (r> = 0.56). In the
main experiment, the effects of the combined application of fog and CO; enrichment
were estimated. A higher diurnal average CO; content was observed in the fog
cabin. This was induced by the cooling effect of the fog and the associated smaller
ventilation openings.

INTRODUCTION

With global warming, higher external temperatures can be expected, which will
demand greater attention to climate control in greenhouses, especially in summer. Air
exchange by forced or free ventilation is mainly used for greenhouse cooling. However,
many side effects are incurred with air exchange via open ventilation. With open
ventilation, water vapor and CO, escape from the greenhouse. Both gas components are
significant in the optimization of microclimatic conditions.

Alternative control processes are necessary to solve this problem. First, it is
essential to concentrate on the microclimate of the crop. Second, a change is necessary
from the control of single variables (temperature, humidity, CO,) to a gas-component
management system.

Evaporative cooling methods are predominantly used in areas with low external
relative humidity. This is an essential prerequisite to enhancing the cooling effect.
Another relevant factor is the equability of the climatic conditions inside the greenhouse.
With fan and pad cooling, horizontal inclines in temperature and humidity may occur. In
exceptional cases, these horizontal inclines in temperature and humidity can lead to
significant differences in growth conditions. The advantages and drawbacks of the two
systems have been discussed intensively by many authors (Giacomelli et al., 1985; Kittas
et al., 2003).

Using fog systems with high-pressure nozzles, evenly distributed conditions can
be achieved if the deviations and the positions of the nozzles are optimized. Fogging
systems are less expensive to install and operate. The cooling efficiency of fogging
systems has been described well by many authors (Abdel-Ghany and Kozai, 2006). The
cooling efficiency of wet pad and fan systems has been calculated based on the
differences between the wet bulb temperatures inside and outside the greenhouse. Using
this method to calculate the cooling efficiency of fog systems results in unrealistic
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assessments (Oztiirk, 2003; Handarto et al., 2005), because of the uncertain estimation of
the air exchange between inside and outside the greenhouse. This air exchange rate plays
an important role in the cooling efficiency (Boulard and Baille, 1993).

Changing the conditions of water-vapor transport by using fog systems has been
well described. Under mist conditions, the air temperature and the vapor pressure deficit
(VPD) decrease significantly. The low VPD level allows the plants to maintain higher
stomatal conductance during times of higher global radiation. The physiological status of
the crop improves, as indicated by higher stomatal conductance (Katsoulas et al., 2001).

An adverse effect of using fog occurs when the relative humidity inside the
greenhouse is too high and the plant tissue temperature is below the dew point. This leads
to wet leaves and fruits, which are thus susceptible to fungal diseases. This can only be
prevented by more precisely controlling the microclimate and by changes in the control
strategy.

An essential prerequisite is knowledge of the plants’ responses to the higher
humidity. For this, a Mollier diagram or a psychrometric chart provides an adequate and
complex description of the changes in temperature and relative humidity that result from
technical systems such as the heating, ventilation, and fog systems (Abdel-Ghany et al.,
2006). The Mollier diagram of water vapor and enthalpy is a useful tool with which to
design a combined model for temperature and humidity control (Schmidt, 2005a). Using
the evaluation quantity called ‘gas exchange efficiency’ (GEE), it is possible to appraise
the efficiency of light use (Schmidt, 2005b).

MATERIALS AND METHODS

A two-step program was used to determine the influence of higher concentrations
of water vapor on GEE. First, in preliminary experiments, the influence of higher vapor
content on GEE was investigated; second, the combined use of fog and CO, enrichment
was evaluated.

The experiments were conducted with tomatoes (Lycopersicon esculentum) in two
75 m’ single-span greenhouse cabins situated in a north—south direction on the Dahlem
campus, Humboldt University, Berlin. The height of the Venlo-type greenhouse was 4.5
m, and the ventilation opening ratio was 50% (roof ventilation only). The fog system
included a reverse osmosis system for producing pure water, a storage tank, a high-
pressure pump with an adjustable valve, high-pressure tubes, and electrically operated
solenoid valves to switch the fog system on and off. The water pressure inside the system
was 120 bars, which produced very small drips (< 20 um). Fog nozzles (0.05 nozzles/m?)
were first installed at a height of 2.5 m.

The microclimatic conditions and outside meteorological data were measured with
the Plantputer control system, which was integrated into the greenhouse. To measure the
plant responses, a PTM 48 Phytomonitor was used. The EPM 2006 Phytomonitor
(Schmidt, 1998), (both Steinbeis GmbH & Co., Germany) was used for process control.

Net photosynthesis, transpiration, and microclimate were measured at 5 min
intervals. GEE was calculated from the measured CO, uptake (CO,un) and the calculated
CO; uptake (CO,u.), estimated from the correlation between net photosynthesis and
photosynthetically active radiation (Eq. 1.).

GEE = Caun |
COZUc Equation 1

The GEE values were organized into different classes and arranged on a color
scale.

The GEE values were plotted on a digitized Mollier h-x diagram to determine the
quality of the climate control (circumference of the scatter plot) and to estimate the range
of the highest GEE. A counting algorithm in the software estimated the hold of the
condition point at different levels of GEE.

1302



In the first trial, we only examined GEE at different vapor concentrations. The fog
system was switched on when the relative humidity dropped below 60%. The fog system
was interlocked against ventilation.

In the second trial, GEE was compared between one cabin with fog and CO;
enrichment and another cabin with CO, enrichment without fog. Both cabins were
controlled in a conventional way (heating < 18°C, ventilation > 25°C, fog system < 60%,
CO; 900 ppm). Fog and CO, were locked against ventilation opening. The fruits were
classified in A-Quality (>70 g/fruit), B-Quality (50-70 g/fruit) and C-Quality (<50
g/fruit). Furthermore the fruits with blossom-end-rot, fruit cracking and other diseases
were throw out.

RESULTS AND DISCUSSION

In the first trial, high GEE measurements were observed between 24°C and 26°C
and at a relative humidity of 70%—-90% (Fig. 5). There was a positive correlation between
GEE and relative humidity and a negative correlation between GEE and leaf transpiration
(Fig. 1). It is reasonably expect an influence of transpiration mass flow to gas exchange at
the boundary layer. However, lower stomatal conductivity was observed in similar
experiments. Low VPD levels allow plants to maintain higher stomatal conductance
(Katsoulas et al., 2001). A 17.8% higher yield (Table 1), an increase in fruit quality, and a
lower tendency for fruit to crack were also observed (21% to 14% in this trial).

In the experiment that compared the effects of CO, enrichment with and without
fog, significant increases in the diurnal mean absolute humidity and CO, content were
observed between the plants under the two sets of conditions. As expected, there was a
higher mean absolute humidity and also a higher mean diurnal CO, concentration (Fig. 3).
This can be attributed to shorter periods of ventilation opening and less frequent vent
opening, induced by the cooling effect of the fog system. As a result, a shift of the scatter
plot to the right was observed in the Mollier chart (Fig. 6). Thus, many dry and hot
climatic conditions were avoided. The highest GEE was found between 80% and 90%
relative humidity (Fig. 7). This was also the Zone with the highest leaf transpiration mass
flow witch indicates a high stomatal conductivity (Fig. 6). Compared with CO,
enrichment without fog, a 22% higher hold with GEE > 100% was measured with fog
(Fig. 2). With higher cumulative CO, uptake, there was an 8% increase in yield (Table 1).
This was also documented with a higher cumulative CO, uptake in the fog cabin
measured by the PTM-48 phytomonitor (Fig. 4).

From these data, the following points should be emphasized: (1) the application of
fog in greenhouses with CO, enrichment leads to higher CO, concentrations, especially in
times of high global radiation; (2) many critical climatic situations with high vapour
concentration deficit (VCD) can be prevented; and (3) higher GEE should produce higher
yields.

CONCLUSIONS

These results clearly demonstrate the beneficial contribution of evaporative
cooling to the effects of high-pressure fog systems on microclimates. The combined
application of vapor and CO, may support the fixation of CO; by plants, leading to higher
vapor content in the greenhouse. Thus the microclimate conditions will improve, causing
elevated GEE and greater vegetative and generative growth.

However, these advantages are restricted by conventional control in summer. To
protect plants against high tissue temperatures, ventilation acts against the principle of
fixing CO, and vapor inside the greenhouse. In most commercial greenhouses, fog
systems involve spraying with low-pressure systems, which produce large drips. These
drips do not evaporate. Furthermore, adverse positioning of the fog nozzles leads to wet
leaves and fruit. To avoid this deleterious effect, new control strategies are necessary.

To protect plants against wetness, an interception of the VCD is an essential
prerequisite. By removing vapor during short periods of ventilation, and thus controlling
the relative humidity in the roof, excess sensible heat can be transformed to latent heat
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and leave the greenhouse on a short way.

Further investigations are necessary (a) to optimize the system setup and (b) to
characterize the air flow in the greenhouse using Computerized Flow Dynamics (CFD)
technology.
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Tables

Table 1. Difference in fruit yield and quality (g/plant).

2006 2007
without CO, enrichment with CO, enrichment (900 ppm)
no fog  fog (> 60%) difference no fog  fog (> 60%) difference
yield 3680 4335 17,8% 3265 3525 7,9%
A-Quality 1398 1864 38% /43% 1175 1445 36%/41%
C-Quality 662 824 18% /19% 686 670 21%/19%
Cracked fruits 773 607 21% / 14% 490 423 15%/12%
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Fig. 1. Dependence of GEE from relative humidity and leaf transpiration without CO,
enrichment.
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Fig. 2. Hold of gas exchange efficiency at different classes.
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Fig. 3. GEE - Scatter plot of CO, + fog greenhouse (left) vs. CO; only (right).
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Fig. 4. Comparison of measured cumulative CO, uptake between CO, enrichment and
CO; enrichment with fog application.
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Fig. 5. Scatter plot of VCD (left) and GEE ( right) using fog system (n= 15,000).
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Fig. 7. GEE - Scatter plot of CO, + fog greenhouse (left) vs. CO; only (right).
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